文章目录
1. 题目2. 添加松弛变量3. 大M法4. 两阶段法
1. 题目
目标函数:
min
z
=
4
x
1
+
x
2
\min z = 4x_1 + x_2
minz=4x1+x2
约束条件:
s.t.
{
3
x
1
+
x
2
=
3
4
x
1
+
3
x
2
≥
6
x
1
+
2
x
2
≤
4
x
1
,
x
2
≥
0
\text{s.t.} \begin{cases} 3x_1 + x_2 = 3 \\ 4x_1 + 3x_2 \geq 6 \\ x_1 + 2x_2 \leq 4 \\ x_1, x_2 \geq 0 \end{cases}
s.t.⎩⎪⎪⎪⎨⎪⎪⎪⎧3x1+x2=34x1+3x2≥6x1+2x2≤4x1,x2≥0
2. 添加松弛变量
min
z
=
4
x
1
+
x
2
+
0
x
3
+
0
x
4
\min z = 4x_1 + x_2 + 0x_3 + 0x_4
minz=4x1+x2+0x3+0x4
s.t.
{
3
x
1
+
x
2
=
3
4
x
1
+
3
x
2
−
x
3
=
6
x
1
+
2
x
2
+
x
4
=
4
x
i
≥
0
,
i
=
1
,
2
,
…
,
4
\text{s.t.} \begin{cases} 3x_1 + x_2 = 3 \\ 4x_1 + 3x_2 - x_3 = 6 \\ x_1 + 2x_2 + x_4 = 4 \\ x_i \geq 0, i = 1,2,\dots, 4 \end{cases}
s.t.⎩⎪⎪⎪⎨⎪⎪⎪⎧3x1+x2=34x1+3x2−x3=6x1+2x2+x4=4xi≥0,i=1,2,…,4
3. 大M法
max
−
z
=
−
4
x
1
−
x
2
+
0
x
3
+
0
x
4
−
M
x
5
−
M
x
6
\max -z = -4x_1 - x_2 + 0x_3 + 0x_4 - Mx_5 - Mx_6
max−z=−4x1−x2+0x3+0x4−Mx5−Mx6
s.t.
{
3
x
1
+
x
2
+
x
5
=
3
4
x
1
+
3
x
2
−
x
3
+
x
6
=
6
x
1
+
2
x
2
+
x
4
=
4
x
i
≥
0
,
i
=
1
,
2
,
…
,
6
\text{s.t.} \begin{cases} 3x_1 + x_2 + x_5 = 3 \\ 4x_1 + 3x_2 - x_3 + x_6 = 6 \\ x_1 + 2x_2 + x_4 = 4 \\ x_i \geq 0, i = 1,2,\dots, 6 \end{cases}
s.t.⎩⎪⎪⎪⎨⎪⎪⎪⎧3x1+x2+x5=34x1+3x2−x3+x6=6x1+2x2+x4=4xi≥0,i=1,2,…,6
单纯形表
.
C
C
C.-4-100-M-M
C
B
C_B
CB基
b
b
b
x
1
↓
x_1 \downarrow
x1↓
x
2
x_2
x2
x
3
x_3
x3
x
4
x_4
x4
x
5
x_5
x5
x
6
x_6
x6-M
←
x
5
\leftarrow x_5
←x53[3]10010-M
x
6
x_6
x6643-10010
x
4
x_4
x44120100.
σ
\sigma
σ.7M-44M-1-M000
入基变量
x
1
x_1
x1,出基变量
x
5
x_5
x5;
.
C
C
C.-4-100-M-M
C
B
C_B
CB基
b
b
b
x
1
x_1
x1
x
2
↓
x_2 \downarrow
x2↓
x
3
x_3
x3
x
4
x_4
x4
x
5
x_5
x5
x
6
x_6
x6-4
x
1
x_1
x111
1
3
\frac{1}{3}
3100
1
3
\frac{1}{3}
310-M
←
x
6
\leftarrow x_6
←x620[
5
3
\frac{5}{3}
35]-10-
4
3
\frac{4}{3}
3410
x
4
x_4
x430
5
3
\frac{5}{3}
3501-
1
3
\frac{1}{3}
310.
σ
\sigma
σ.0
5
3
\frac{5}{3}
35M+
1
3
\frac{1}{3}
31-M0-
7
3
\frac{7}{3}
37M+
4
3
\frac{4}{3}
340
入基变量
x
2
x_2
x2,出基变量
x
6
x_6
x6;
.
C
C
C.-4-100-M-M
C
B
C_B
CB基
b
b
b
x
1
x_1
x1
x
2
x_2
x2
x
3
↓
x_3 \downarrow
x3↓
x
4
x_4
x4
x
5
x_5
x5
x
6
x_6
x6-4
x
1
x_1
x1
3
5
\frac{3}{5}
5310
1
5
\frac{1}{5}
510
1
15
\frac{1}{15}
151-
1
5
\frac{1}{5}
51-1
x
2
x_2
x2
6
5
\frac{6}{5}
5601
−
3
5
-\frac{3}{5}
−530
−
4
5
-\frac{4}{5}
−54
3
5
\frac{3}{5}
530
←
x
4
\leftarrow x_4
←x4100[1]11-1.
σ
\sigma
σ.00
1
5
\frac{1}{5}
510-M-
8
15
\frac{8}{15}
158-M-
1
5
\frac{1}{5}
51
入基变量
x
3
x_3
x3,出基变量
x
4
x_4
x4;
.
C
C
C.-4-100-M-M
C
B
C_B
CB基
b
b
b
x
1
x_1
x1
x
2
x_2
x2
x
3
x_3
x3
x
4
x_4
x4
x
5
x_5
x5
x
6
x_6
x6-4
x
1
x_1
x1
2
5
\frac{2}{5}
52100-
1
5
\frac{1}{5}
51-
2
15
\frac{2}{15}
1520-1
x
2
x_2
x2
9
5
\frac{9}{5}
59010
3
5
\frac{3}{5}
53
−
1
5
-\frac{1}{5}
−5100
x
3
x_3
x3100111-1.
σ
\sigma
σ.000
−
1
5
-\frac{1}{5}
−51-M-
11
15
\frac{11}{15}
1511-M
所有的
σ
j
≤
0
\sigma_j \leq 0
σj≤0,且所有的人工变量都是非基变量。 得到最优解:
x
∗
=
(
2
5
,
9
5
,
1
,
0
)
T
,
x^* = (\frac{2}{5}, \frac{9}{5}, 1, 0)^T,
x∗=(52,59,1,0)T,
z
∗
=
4
x
1
+
x
2
=
4
∗
2
5
+
9
5
=
17
5
.
z* = 4x_1 + x_2 = 4*\frac{2}{5} + \frac{9}{5} = \frac{17}{5}.
z∗=4x1+x2=4∗52+59=517.
4. 两阶段法
第一阶段:
min
w
=
0
x
1
+
0
x
2
+
0
x
3
+
0
x
4
+
x
5
+
x
6
\min w = 0x_1 + 0x_2 + 0x_3 + 0x_4 + x_5 + x_6
minw=0x1+0x2+0x3+0x4+x5+x6
⇔
\Leftrightarrow
⇔
max
−
w
=
0
x
1
+
0
x
2
+
0
x
3
+
0
x
4
−
x
5
−
x
6
\max -w = 0x_1 + 0x_2 + 0x_3 + 0x_4 - x_5 - x_6
max−w=0x1+0x2+0x3+0x4−x5−x6
s.t.
{
3
x
1
+
x
2
+
x
5
=
3
4
x
1
+
3
x
2
−
x
3
+
x
6
=
6
x
1
+
2
x
2
+
x
4
=
4
x
i
≥
0
,
i
=
1
,
2
,
…
,
6
\text{s.t.} \begin{cases} 3x_1 + x_2 + x_5 = 3 \\ 4x_1 + 3x_2 - x_3 + x_6 = 6 \\ x_1 + 2x_2 + x_4 = 4 \\ x_i \geq 0, i = 1,2,\dots, 6 \end{cases}
s.t.⎩⎪⎪⎪⎨⎪⎪⎪⎧3x1+x2+x5=34x1+3x2−x3+x6=6x1+2x2+x4=4xi≥0,i=1,2,…,6
单纯形表
.
C
C
C.0000-1-1
C
B
C_B
CB基
b
b
b
x
1
↓
x_1 \downarrow
x1↓
x
2
x_2
x2
x
3
x_3
x3
x
4
x_4
x4
x
5
x_5
x5
x
6
x_6
x6-1
←
x
5
\leftarrow x_5
←x53[3]10010-1
x
6
x_6
x6643-10010
x
4
x_4
x44120100.
σ
\sigma
σ.74-1000
入基变量
x
1
x_1
x1,出基变量
x
5
x_5
x5;
.
C
C
C.0000-1-1
C
B
C_B
CB基
b
b
b
x
1
x_1
x1
x
2
↓
x_2 \downarrow
x2↓
x
3
x_3
x3
x
4
x_4
x4
x
5
x_5
x5
x
6
x_6
x60
x
1
x_1
x111
1
3
\frac{1}{3}
3100
1
3
\frac{1}{3}
310-1
←
x
6
\leftarrow x_6
←x620[
5
3
\frac{5}{3}
35]-10-
4
3
\frac{4}{3}
3410
x
4
x_4
x430
5
3
\frac{5}{3}
3501-
1
3
\frac{1}{3}
310.
σ
\sigma
σ.0
5
3
\frac{5}{3}
35-10-
7
3
\frac{7}{3}
370
入基变量
x
2
x_2
x2,出基变量
x
6
x_6
x6;
.
C
C
C.0000-1-1
C
B
C_B
CB基
b
b
b
x
1
x_1
x1
x
2
x_2
x2
x
3
x_3
x3
x
4
x_4
x4
x
5
x_5
x5
x
6
x_6
x60
x
1
x_1
x1
3
5
\frac{3}{5}
5310
1
5
\frac{1}{5}
510
1
15
\frac{1}{15}
151-
1
5
\frac{1}{5}
510
x
2
x_2
x2
6
5
\frac{6}{5}
5601
−
3
5
-\frac{3}{5}
−530
−
4
5
-\frac{4}{5}
−54
3
5
\frac{3}{5}
530
x
4
x_4
x4100111-1.
σ
\sigma
σ.000000
第一阶段结束。
第二阶段
max
−
z
=
−
4
x
1
−
x
2
+
0
x
3
+
0
x
4
\max -z = -4x_1 - x_2 + 0x_3 + 0x_4
max−z=−4x1−x2+0x3+0x4
.
C
C
C.-4-100
C
B
C_B
CB基
b
b
b
x
1
x_1
x1
x
2
x_2
x2
x
3
↓
x_3 \downarrow
x3↓
x
4
x_4
x4-4
x
1
x_1
x1
3
5
\frac{3}{5}
5310
1
5
\frac{1}{5}
510-1
x
2
x_2
x2
6
5
\frac{6}{5}
5601
−
3
5
-\frac{3}{5}
−5300
←
x
4
\leftarrow x_4
←x4100[1]1.
σ
\sigma
σ.00
1
5
\frac{1}{5}
510
入基变量
x
3
x_3
x3,出基变量
x
4
x_4
x4;
.
C
C
C.-4-100
C
B
C_B
CB基
b
b
b
x
1
x_1
x1
x
2
x_2
x2
x
3
x_3
x3
x
4
x_4
x4-4
x
1
x_1
x1
2
5
\frac{2}{5}
52100-
1
5
\frac{1}{5}
51-1
x
2
x_2
x2
9
5
\frac{9}{5}
59010
3
5
\frac{3}{5}
530
x
3
x_3
x310011.
σ
\sigma
σ.000
−
1
5
-\frac{1}{5}
−51
第二阶段结束。
最优解
x
∗
=
(
2
5
,
9
5
,
1
,
0
)
T
,
x^* = (\frac{2}{5}, \frac{9}{5}, 1, 0)^T,
x∗=(52,59,1,0)T,
z
∗
=
4
x
1
+
x
2
=
4
∗
2
5
+
9
5
=
17
5
.
z^* = 4x_1 + x_2 = 4*\frac{2}{5} + \frac{9}{5} = \frac{17}{5}.
z∗=4x1+x2=4∗52+59=517.